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h Motivation
| Contributions

Quantum Neural Network Architecture Search

Quantum Neural Networks
@ Networks which combine classical layers and parametrized
quantum circuits (PQCs).
Challenges of Designing QNNs

@ Designing PQCs is very hard and labor-intensive, requiring
deep knowledge of quantum mechanics.

@ Automation is essential to simplify this complex process and
make QNNs more accessible and efficient.

Quantum Neural Network Search

@ Automating the process of designing optimal parametrized
quantum circuits which are integrated into QNNs along with
classical layers for data encoding and decoding.
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Figure: Instance of a Quantum Neural Network
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Motivation
Contributions

Quantum Neural Network Architecture Search

Impact on:
o Optimization of Neural Network Architectures

o Efficient Hyperparameter Tuning
o Advanced Architecture Selection

e Enhancing Training Efficiency
e Minimizing Training Parameters
e Simplifying Architectural Complexity
@ Accelerating Scientific Research in Various Domains

o Chemistry and Material Science
e Financial Modeling and Prediction
o Medical Diagnosis and Healthcare
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Introduction

Original Contributions

Research Motivation

The research is motivated by addressing the following
questions:
@ Research Question 1:

e How do quantum gate selection and entanglement strategies
affect the performance and expressivity of QNNs?

@ Research Question 2:

e Under what conditions can QNNs be optimized to outperform
classical ANNs?
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Original Contributions

Theoretical Perspective
@ Novel Approach to Modelling the Reinforcement Task

@ First Implementation of RL which integrates the generated
circuits in a QNN that is trained on real data

Practical Implementation

@ One of the first publicly accessible frameworks designed
explicitly for optimizing PQCs
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Current State of the Art

Key Points

@ Research in Quantum Neural Network Architecture Search
(QNNAS) is still in its infancy and is very limited.

o It is based on Neural Architecture Search (NAS), which has
over thousands of research papers.

@ Most existing work consists of quantum implementations of
classical neural network search algorithms.

@ Proposed algorithms for generating quantum circuit
architectures have often been tested only on regular,
non-parameterizable circuits, not being fully integrated within
Quantum Neural Networks (QNNs).
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Quantum Neural Architecture Search Literature
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Reinforcement Task

Methodology

Employed Dataset

o Benchmark QNNs Architectures used in:
o Reinforcement Learning

o CartPole Environment
o Frozen Lake

o Supervised Learning - Classification Problems

o Iris Dataset
o Breast Cancer Wisconsin Dataset
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Dataset

Methodology

The Reinforcement Task |

Description:

@ The agent must choose a layer action in order to build a PQC
architecture which has the best performance on its specific
task and respects the constraints of a PQC architecture.

Reinforcement Key Points:
o State: A Parameterized Quantum Circuit
@ Action: Placement of a Quantum Gate in the Architecture

@ Reward: Accuracy of the Generated QNN measured on its
specific task

Anca-loana Muscalagiu



Dataset

Methodology

The Reinforcement Task Il
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Figure: Overview of the Generated Circuit from the Environment State
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Dataset

Methodology

The Reinforcement Task |l

Layer Action
@ Rotation Parameterizable Gates: RX(6), RY(0), RZ(0)
o Entaglement Gates: CX, CY, CZ
e Standard Gates: RX, RY, RZ

@ Measurements
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Reinforcement Task

Our Methodology Overview
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Figure: Overview of the QNNAS Methodology
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Reinforcement Task

Agent Training Process

@ The agent places quantum gates in the Environment,
creating the Child Network by integrating the generated
circuit into a QNN, which is later trained on its problem with
its specific dataset.

@ The performance of the Child Network is evaluated, and the
reward (accuracy obtained) is collected by the agent.

@ The agent's experiences, including actions taken and rewards
received, are stored in the Experience Replay Buffer.

@ The Controller Network Trainer uses the stored experiences
to compute optimal action values.

@ The Policy Network is updated based on these computed
values to improve the agent's decision-making process, with
periodic updates from the Target Network to ensure
consistent and stable training.
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Experimental Results |

The initial experiments were conducted using the following
settings:

o Reinforcement Hyperparameters:
Architecture Max Length (State Max Length): 4
Possible Gates: RX(6), RY(6), RZ(6), CX, CY, CZ
Discount Rate: 0.99
Learning Rate: 1 x 10~*

@ Architecture of Controller Network:

o Layers: Linear (4 — 16), ReLU, Quantum Layer with RX(),
RY(0), RZ(8) rotations operating on a 16-qubit register and
outputting one observation value, then Linear (1 — 7) actions
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Experimental Results Il

@ Problem: Classification of Iris flowers in 3 categories

o Dataset: Iris dataset consisting of 150 samples.

@ Input Features: the length and the width of the sepals and
petals, in centimeters
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Figure: Generated Architecture

Best Accuracy Attained: 70%



Limitations and Challenges

e Computationally Intensive:

e Training the generated quantum architectures at each step.
o Controller network training required after a few episodes.

e Quantum Hardware:
e Limited number of qubits available.
e Long waiting time for circuit compilation and execution.
o Currently feasible to use only simulators.

e Quantum Noise:
e Quantum noise can induce errors in QNN computations.
o Reduces accuracy of predictions.
e Simulated to some extent on simulators.
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